If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-21x-91=0
a = 7; b = -21; c = -91;
Δ = b2-4ac
Δ = -212-4·7·(-91)
Δ = 2989
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2989}=\sqrt{49*61}=\sqrt{49}*\sqrt{61}=7\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-7\sqrt{61}}{2*7}=\frac{21-7\sqrt{61}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+7\sqrt{61}}{2*7}=\frac{21+7\sqrt{61}}{14} $
| 7x-3-5x=17 | | 1x-134=189-15x | | 9=4-b/6 | | 5/7x+4-2/7x=13 | | 7=x=3x-5 | | 1/2s-3/2+s=15 | | 9-(x-2)=99 | | 5x-2(x+22)=4(2x-3) | | -3g-10=-46 | | 4(5x+1)=8x+4 | | 8•p=16 | | 5x+8+5x=68 | | -3g—10=-46 | | 9b−2=-5+9b | | 4/74=x/240 | | x/78=-14 | | -9(x-2)=-4x-32 | | 2(172-y)+3y=180 | | 24n+10=9n | | 2x+4+7x-1+10=6x+2 | | 18=x+x+10 | | (1/4)m-6=2(m+9) | | 1/3m+7+7m=1/2(m-14) | | C(x)=3^2-162x+82 | | 14m=-210 | | -2(12-6f)=6(2f-4) | | 4(x-1)/8=2(x+1)/6 | | 3+2x+2x=51 | | 3(r+2)=3r+6 | | 5-3(2x+1)=14 | | 6x+3.20=18.20 | | -4(-15+15w)=3(20-20w) |